A short review of our current understanding of the development of ring faults during collapse caldera formation
نویسندگان
چکیده
*Correspondence: Adelina Geyer, Geophysical and Geochemical Modelling of Geohazard Processes and Subsurface Resources, Group of Volcanology, SIMGEO (UB-CSIC), Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Lluis Sole i Sabaris s/n, Barcelona 08028, Spain e-mail: [email protected] The term collapse caldera refers to those volcanic depressions resulting from the sinking of the chamber roof due to the rapid withdrawal of magma during the course of an eruption. During the last three decades, collapse caldera dynamics has been the focus of attention of numerous, theoretical, numerical, and experimental studies. Nonetheless, even if there is a tendency to go for a general and comprehensive caldera dynamics model, some key aspects remain unclear, controversial or completely unsolved. This is the case of ring fault nucleation points and propagation and dip direction. Since direct information on calderas’ deeper structure comes mainly from partially eroded calderas or few witnessed collapses, ring faults layout at depth remains still uncertain. This has generated a strong debate over the detailed internal fault and fracture configuration of a caldera collapse and, in more detail, how ring faults initiate and propagate. We offer here a very short description of the main results obtained by those analog and theoretical/mathematical models applied to the study of collapse caldera formation. We place special attention on those observations related to the nucleation and propagation of the collapse-controlling ring faults. This summary is relevant to understand the current state-of-the-art of this topic and it should be taken under consideration in future works dealing with collapse caldera dynamics.
منابع مشابه
Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry
Peter W. Lipman U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA e-mail: [email protected] Abstract Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a revie...
متن کاملCaldera rim collapse: A hidden volcanic hazard
Following the emblematic fl ank collapse of Mount St Helens in 1981, numerous models of flank sliding have been proposed. These models have allowed to largely improve the understanding of mechanisms involved in such landslides, which represent a tremendous risk for populations living around volcanoes. In this article, a new mode of landslide formation, related to buried calderas, is described. ...
متن کاملMagma storage in a strike-slip caldera
Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. H...
متن کاملGeometrical and seismic parameters of the Qoshadagh fault and its role in evolution of the Sabalan Plio-Quaternary Volcano (Northwest of Iran)
In order to evaluate seismic hazard along Qoshadagh Fault (QDF, the causative fault of 11 Aug. 2012 Varzegan- Ahar earthquake), geometric and seismic parameters of the fault were investigated. QDF consists of a central E-W striking, dextral-reverse segment terminating at both ends into NW-SE striking splay arrays. Both eastern and western splay arrays form locally transtensional bends. The NW-S...
متن کاملCollapse structures in Dowgonbadan region, Zagros fold- thrust belt
Allochthonous masses are common structures in Zagros fold-thrust belt. They are generally considered as collapse structures formed by the influence of gravity and in rock units with competency contrast. However, large allochthonous masses mapped in Dowgonbadan area in Dezful Embayment near the Mountain Front Fault (MFF) of Zagros show characteristics different from the belt common collapse stru...
متن کامل